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2Département de physique et d’astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada

Accepted 2002 January 21. Received 2002 January 19; in original form 2001 November 23

AB S TRACT

Radiative accelerations are quantities that are crucial in the study of diffusion processes in
stars. Their calculation requires the use of large atomic and opacity data bases, and generally

necessitates very heavy numerical computations. New approximate formulae for radiative

accelerations in stars, arising from both bound–bound and bound–free transitions, are
presented. These are written in a parametric form, which separate the terms depending on

the local abundance of the element under consideration from those depending mainly on the

atomic data. These formulae are shown to be significantly superior to those previously
published. The main reason for this improvement comes form the use of monochromatic

opacities instead of approximating these by the Rosseland mean. The principal advantage for

the use of these parametric equations over other methods for calculating radiative
accelerations is its numerical expediency. Results are shown for several elements (C, Ar, Ca

and Fe) in a type A star.
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1 INTRODUCTION

The transfer of momentum to atoms from the radiative field in stars
during photoexcitation or photoionization can induce radiatively
driven diffusion (Michaud 1970). In hydrodynamically stable
stellar regions, radiative diffusion occurs and can cause elemental
stratification and thus abundance anomalies. The diffusion velocity
of each element depends on its radiative acceleration, which in turn
depends on the capacity of its ions to absorb radiation.
Diffusion of the elements can modify the structure and evolution

of stars. Evolutionary models including diffusion have been built
for the Sun (Turcotte, Richer & Michaud 1998a) and AmFm stars
(Turcotte et al. 1998b; Richer, Michaud & Turcotte 2000). In these
stars, the outer regions are convective and diffusion is only
dominant deeper in the interior. When the atmosphere of stars is
stable, which seems to be the case for hotter stars, diffusion can be
the dominant physical process in the line-forming region. Model
atmospheres taking into account the effect of the stratification of
the elements owing to diffusion on the atmospheric structure of
blue horizontal-branch stars (Hui-Bon-Hoa, LeBlanc & Hauschildt
2000) and white dwarfs (Dreizler & Wolff 1999) have also been
developed recently. Other studies have mainly focused on the
creation of abundance anomalies in the atmospheres of Ap stars
(Michaud 1970) and HgMn stars (Alecian & Michaud 1981;
Seaton 1999).
In order to study properly the diffusion of the elements in stars it

is imperative to be able to evaluate precisely the radiative
acceleration of each elemental species present. In stellar
atmospheres (optically thin medium), the radiation transfer has
to be solved explicitly [for the most recent studies see Hui-Bon-
Hoa et al. 2002 in local thermodynamic equilibrium (LTE)/non-
local thermodynamic equilibrium (NLTE), and Alecian & Stift
(2002) for polarized radiation transfer in LTE]. In stellar interiors
(optically thick), the diffusion approximation allows to simplify
greatly the computation of the radiation flux. The results presented
here are valid only in this last case.
Several methods have been employed to calculate radiative

accelerations. The most direct, but also the most time-consuming,
is the sampling method (e.g. Seaton 1997; Richer et al. 1998;
LeBlanc, Michaud & Richer 2000, hereafter LMR2000). It consists
of calculating the monochromatic opacity of each species at a
sufficiently high number of frequency points in order to properly
integrate the monochromatic opacity of the species under
consideration, multiplied by the radiative flux, which intervenes
in the radiative acceleration equation (see equation 11 of Gonzalez
et al. 1995, hereafter GLAM). Seaton (1997) proposed the use of
interpolation tables for radiative acceleration calculations. These
tables were built with the OPACITY Project data (Seaton et al.
1992) available through TOPbase (Cunto et al. 1993). Although
this scheme is numerically efficient, the tables are only valid for a
narrow abundance domain and the inclusion of new atomic data,
other species for instance, would require the elaborate task of
recalculating all of these tables.
Another method, commonly called the GLAM method, uses anPE-mail: georges.alecian@obspm.fr (GA); leblanfn@umoncton.ca (FL)
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average value for the background opacity, i.e. the total opacity
minus the opacity of the transition under consideration. In this
method the frequency spectrum is divided into 4000 intervals in
which this average background opacity is calculated. The total
opacity is divided into two parts: the monochromatic opacity of the
transition under consideration and the average background opacity.
The radiative acceleration of each bound–bound and bound–free
transition is then calculated by integrating the radiative accelera-
tion equation. Unfortunately, this method suffers from the same
lack of flexibility related to the atomic data as mentioned for the
Seaton (1997) method.
Alecian (1985) and Alecian & Artru (1990) developed a semi-

empirical parametric expression for radiative accelerations arising
from bound–bound transitions in stellar interiors. Two parameters
are found in this expression. They depend on the atomic data of the
ion under consideration and on the plasma conditions, but are
independent of the abundance of this ion. The first parameter
depends on the oscillator strength of the transitions. The other
parameter aims to characterize the saturation of the atomic lines.
The principal advantage of this method is its numerical expediency.
It should be noted that this method is very flexible and as more
complete and precise data tables become available, the parameters
can easily be recalculated. An approximate parametric formula has
also been developed for bound–free transitions (Alecian 1994) by
approximating the photoionization cross-sections of the ions
considered by an analytical expression close to the hydrogenic
case.
The aim of this paper is to improve the semi-empirical methods

described above. It was shown in Alecian & LeBlanc (2000) that
several assumptions on which Alecian & Artru’s (1990) method is
based are not always respected, especially for the more abundant
elements. Moreover, we will include the contribution of the
bound–free transitions using an improved version of Alecian’s
(1994) parametric method. The theoretical framework leading to
these improved methods will be elaborated in Section 2. In
Section 3, the radiative accelerations obtained with the new
parametric equations will be compared to those obtained by the
Seaton (1997) and Alecian & Artru’s (1990) methods. Finally, a
brief conclusion will be presented.

2 THEORY

The semi-analytic approximations defined by Alecian & Artru
(1990) for radiative accelerations of ions owing to bound–bound
transitions are mainly based on the following assumptions: (i)
effects of blends are negligible, (ii) the Rosseland opacity !kR is
supposed to be independent of the ion concentration Ci, (iii) the
total monochromatic opacities k are close to k̄R in the frequency
domain where lines contribute to the radiative acceleration, (iv) all
the lines of the ion saturate at the same concentration, (v) all the
lines have a Lorentz profile, (vi) the radiative acceleration arising
from photoionization is negligible. It should be remembered that
the equations of Alecian & Artru (1990) are only valid for optically
thick regions since the radiation flux used is the one given by the
diffusion approximation. These semi-analytic approximations give
good results for some elements (Ca for instance). However,
comparisons with detailed computations show that these assump-
tions are not valid for several elements (especially for abundant
elements in normal stars, like CNO and Fe) and when elements are
strongly overabundant with respect to solar values. As stressed by
Alecian & LeBlanc (2000), this is probably caused by assumptions
(ii) and (iii), which are clearly not satisfied for abundant elements,

and also by assumption (vi) which is not satisfied for some ions and
never satisfied when strong overabundances are considered.
Approximations (i) and (iv) do not appear very constricting.
Alecian (1994) developed a parametric formula that approxi-

mates the radiative acceleration arising from bound–free
transitions. In this method, the photoionization cross-sections are
approximated by an expression close to that of the hydrogenic ion
and autoionization lines are neglected. This method also assumes
that the opacity arising from the photoionization of the ion under
consideration does not contribute significantly to the total opacity.
We present here new semi-analytic approximations obtained in

the same spirit than those of Alecian & Artru (1990) and Alecian
(1994), but which correct the main drawbacks mentioned above.
These new approximations now involve a more precise treatment
of the opacities.

2.1 Approximate formulae for the contribution arising from
bound–bound transitions

We consider an element A with atomic mass A (in atomic units),
Aþi stands for the ion with charge þ i (0 for neutral).
Let us define the following quantities (symbol ‘–’ stands for

frequency averaged values): kA: monochromatic opacity of
element A, kil: opacity arising from transition l of ion Aþi (at
line centre frequency). The background opacity (other sources of
opacity than A) in the medium is

kmed ¼ k2 kA; ð1Þ
where k is the total opacity of the medium.
Its average over frequency n is defined in the same way as the

Rosseland average:

!kmed ¼

ð1

0

›Bn

›T
›n

ð1

0

1

kmed

›Bn

›T
›n

; ð2Þ

where Bn is the Planck function at the local temperature T.
We define a contribution of element A to the Rosseland average:

!kA ¼ !kR 2 !kmed: ð3Þ

It is also convenient to define

kA2il ¼ kA 2 kil; 1A2il ¼
kA2il

kmed
;

!1A ¼ !kA
!kmed

: ð4Þ

Note that !kR ¼ !kmedð1þ !1AÞ.
In this paper we consider concentrations with respect to

hydrogen, CA ¼ NA/NH and Ci ¼ Ni/NH, where NA, Ni and NH are
respectively the number densities (per unit volume) of element A,
ion Aþi and hydrogen.
Finally, we define two quantities that can be reasonably

considered as independent of the concentration of element A,

dil ¼
1A2il

CA
and !dA ¼ !1A

CA
: ð5Þ

Integrating the detailed radiative acceleration equation (for
instance see equation 5 of Alecian, Michaud & Tully 1993) for a
single bound–bound transition and assuming it has a Lorentz
profile with a full line width at half maximum of gilNeT

21/2, where
Ne is the electronic density and gil is a factor that depends on the
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transition under consideration (see Alecian & Artru 1990), the
acceleration arising from the line l of Aþi is given by (see
Appendix A for more details)

gil ¼ dil
ð1þ !1AÞ
ð1þ 1A2ilÞ

1þ hilCi

ð1þ 1A2ilÞ

" #21=2

ð6Þ

where

dil ¼ q
!kmed

kmed
hilPl;

q ¼ 5:575 £ 1025 T
4
eff

T

R

r

$ %21

A
;

hil ¼
Nil

Ni
f l;

Pl ¼ u4l
eul

ðeul 2 1Þ2 with ul ¼
hnl
kT

; ð7Þ

and

hil ¼
hil

bkmedgil
;

b ¼ 9:83 £ 10223 NeT
21=2

XH
; ð8Þ

where nl is the line centre frequency, Teff and R are respectively the
effective temperature and radius of the star, r is the radius at the
layer with temperature T, Nil is the number density of the ion i in
the initial level of the transition in that same layer, fl is its oscillator
strength, and h and k are respectively the Planck and the Boltzmann
constants. Equation (8) includes the mass fraction of hydrogen
(XH), which was neglected in Alecian & Artru (1990).
The main approximations made to obtain equation (6) are that

line l has a Lorentz profile and that kmed þ kA2il varies weakly over
the frequency interval where the line contributes significantly to gil.
To go further in our analytical development we need to make some
more assumptions. The first one is to suppose that kmed does not
vary significantly when the element’s concentration CA varies. In
main-sequence stars, this assumption is clearly justified (except for
hydrogen and helium) when element A has an abundance x with
respect to the Sun (according to the same definition as Seaton
1997) smaller than around 100 (see Alecian & LeBlanc 2000). This
approximation ensures that dil and hil do not depend on CA. At this
stage, one other assumption is useful to proceed to the series
expansion of equation (6): 1A2il ! 1. This last assumption means
that the contribution kA2il of element A to the background opacity
is negligible at frequency nl. It will be seen below (see Section 3.2)
that this is generally the case except for some blended lines (mutual
blends between lines of the same element) of abundant metals
(mainly CNO and Fe) when log x $ 1. In the following, we define
CA,critical as the concentration above which this approximation is
not valid. The above hypothesis regarding kmed and 1A2il, and
neglecting second order terms in equation (6), allows us to write
the radiative accelerations gil as

gil < dil 1þ CAð !dA 2 dilÞ
& '

£ ð1þ hilCiÞ21=2: ð9Þ

Compared with the original approximation of Alecian (1985),
this expression differs from his equation (1) by the new term which
is in brackets and by the fact that dil and hil depend explicitly on the
opacities.
The total contribution of lines of ion Aþi to the radiative

acceleration gi,line is obtained after summation of gil over all the

bound–bound transitions of the ion. However, to sum equation (9)
directly over l cannot lead to any useful formula. Therefore, we
proceed here as in Alecian (1985): (i) to propose a parametric
expression for gi,line and (ii) to express analytically the various
coefficients in this parametric expression, of the radiative
acceleration arising from bound–bound transitions, according to
the known asymptotic behaviour with respect to the concentration.
As a parametric expression for gi,line we propose the following

one:

gi;line ¼ gi;0ð1þ jiCiÞ £ 1þ Ci

Ci;S

$ %a

: ð10Þ

Compared with the original approximation of Alecian (1985), this
expression differs from his equation (5) by the new ji term and by the
exponent a, which is no longer fixed to21/2, as could be expected if
the lines had a pure Lorentz profile. Ci,S can be considered as the
ion concentration above which saturation of lines is strong.
The best known asymptotic behaviour of the radiative

acceleration is that it tends to be constant with respect to the
concentration of Aþi when Ci is vanishing (or Ci ! Ci;SÞ.
Identifying (10) and

l

P
gil for Ci ¼ 0 allows us to set

gi;0 ¼
l

X
dil ¼ q !kmed

l

XhilPl

kmed
: ð11Þ

Note that in this expression, k̄med and kmed are kept equal to their
values at current concentration Ci – 0.
The two other coefficients, Ci,S and ji, will be determined

considering, this time, large concentrations. We suppose first that
Ci;S ! CA;critical. This hypothesis will be justified below.
Assuming Ci;S ! Ci ! CA;critical (condition denoted by 1),

equation (10) can be approximated as

gi;line
((
1< gi;0C

2a
i;S C

a
i þ gi;0jiC

2a
i;S C

aþ1
i : ð12Þ

If one uses the exact expression of gi,line obtained by a
summation of gil from equation (9), one obtains

gi;line
((
1¼

l

X
gil ¼

l

X
hild

21=2
il

0

@

1

AC21=2
i

þ NA

Ni l

X
hild

21=2
il

ð !dA 2 dilÞ

2

4

3

5Cþ1=2
i : ð13Þ

Note that the ratio NA/Ni does not depend on the concentration.
To find an analytic expression for Ci,S and ji, we identify both

terms ahead of Ci in equations (12) and (13) for a ¼ 21=2. This
leads to

Ci;S ¼ b
l

X hilgil
kmed

$ %1=2

Pl

l

X hil

kmed
Pl

2

66664

3

77775

2

ð14Þ

and

ji ¼
NA

Ni

l

X
ð !dA 2 dilÞ

hilgil
kmed

$ %1=2

Pl

l

X hilgil
kmed

$ %1=2

Pl

: ð15Þ
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We will use the above expressions for Ci,S and ji, for a – 21=2
assuming that these parameters are not too sensitive on deviation of
a from 21/2.
To conclude this subsection, it should be noted that if one

assumes that element A does not contribute to the background
opacity, and if one neglects the departure of monochromatic
opacities from the Rosseland average (i.e. approximations of
Alecian 1985), then equation (10) reduces to the approximate
formulae and parameters of Alecian (1985) and Alecian & Artru
(1990).

2.2 Approximate formulae for the contribution due to
bound–free transitions

Momentum transferred to ions through bound–free transitions can
contribute significantly to the total radiative acceleration. Gener-
ally, for many metals with solar abundances, this contribution is
smaller than the one due to bound–bound transitions (gi,line). The
acceleration owing to photoionization gi,cont presents some
different behaviours than gi,line: (i) it is less subject to saturation
effects because bound–free cross-sections spread over much larger
frequency intervals (and more smoothly) compared with bound–
bound cross-sections, (ii) the momentum received by Aþi is
redistributed to Aþ(i þ 1), (iii) photoionization is a three-body
interaction and thus a fraction of the momentum is taken away by
the ejected electron (e.g. Massacrier 1996). Several papers have
discussed the bound–free acceleration (e.g. Alecian 1994 and
GLAM) and it is outside the scope of the present paper to discuss in
more details the properties of gi,cont.
According to Alecian (1994), assuming that photoionization

cross-sections follow a power law close to the hydrogenic one, and
neglecting the momentum taken away by electrons, gi,cont (for
i . 0Þ can be approximated by the following formulae:

gi;cont < 7:16 £ 10226 NeT
4
eff

T
3
2

R

r

$ %2 1

Ai 2
Qi; ð16Þ

where

Qi ¼ ai
!kmedNi21;0pi21

Ni21pig0 k

X nkgkQk

kmed;k
ð17Þ

and

Qk < u3k
uk

12 e2uk
2 euk lnð12 e2uk Þ

h i
; ð18Þ

where Ni21,0 is the number density of the ground level of Aþ(i 2 1)

and Ni21 is the number density of this ion, pi the partition function
of Aþi, nk, gk, are respectively the main quantum number and the
statistical weight of energy level k of Aþ(i 2 1), uk and kmed,k are
respectively u and kmed at the frequency threshold for photons to
ionize from level k. The factor ai has a value of unity by default, but
we have introduced it to correct possible discrepancies with respect
to hydrogenic cross-sections. In equation (17), to be consistent
with gi,line, we have chosen to approximate Qi in terms of k̄med and
kmed rather than k̄R and k as in Alecian (1994). As stressed by
Alecian (1994), the main contribution toQi comes from the ground
level of Aþ(i 2 1) and, owing to the rapid decrease of Qk when
higher energy levels are considered, we never encounter situations
where the sum over k has any tendency to diverge. Note that
contrarily to gi,line (if redistribution is negligible), gi,cont is not zero
for the state in which the ion is completely ionized (C VII for
instance).

In the present work, in order to be able to compare our results
with the accelerations obtained using the tables and codes of
Seaton (1997) and LMR2000, the total radiative acceleration for
element A is expressed as

gtot ¼
i

P
Niðgi;line þ gi;contÞ

i

P
Ni

: ð19Þ

This expression does not take into account the redistribution effects
between ions nor their mobility, which should be considered when
accurate diffusion velocities are needed.

3 RESULTS

Numerical calculations of radiative accelerations are presented
using the formulae developed in the previous section. Their
accuracy and their range of validity are verified by comparing them
to accelerations obtained by detailed methods (Seaton 1997 and
LMR2000). These computations were performed for a main
sequence star with Teff ¼ 10 000K and log g ¼ 4:314 (model
communicated by J. Richer, see Richer & Michaud 1993).

3.1 Atomic data and opacities

The above formulae involve atomic data for bound–bound
transitions, and monochromatic opacities arising from each
element separately. We have used the data produced by the
OPACITY Project (hereafter OP, Seaton et al. 1992) because these
atomic and opacity data are consistent and the radiative
accelerations obtained with the improved approximate formulae
presented here can be compared with those computed using the
tables and codes of Seaton (1997). The atomic data have been
loaded from TOPbase in CDS (Strasbourg). The opacities have
been computed with the OP-tables and codes (2000 version) kindly
communicated by M. J. Seaton and C. Zeippen. The OP-tables
consist of original OP cross-sections files (the total cross-sections
of each element are tabulated with respect to u). The OP-codes
compute k̄R and k̄med from these files for a given mixture,
temperature and density. We have included these codes in ours, and
we have developed our own utilities to compute (using the same
tables) the monochromatic opacities needed in the formulae
presented in the previous section.

3.2 Numerical computations of radiative accelerations

For the sake of clarity, we have chosen to present our computations
for only four metals, C, Ar, Ca and Fe, which are representative of
the different behaviours we have encountered among the ten
elements we have considered (C, N, O, Ne, Mg, Si, S, Ar, Ca and
Fe).
To validate the approximations made in Section 2 for bound–

bound transitions, we want to verify if the new parametric
equations can reproduce two basic aspects: (i) the ability of
equation (11) to provide accelerations for vanishing concen-
trations, and (ii) the ability of equation (10) to reproduce the
saturation effect over a large range of concentrations.
In the computations presented below, we have found that when

log x $ 1 for abundant elements (CNO and Fe), the assumption
1A2il ! 1 used in Section 2 is not always satisfied and even
1A2il . 1 can be encountered. This means that CA is larger than or
close to CA,critical. In that case we force 1A2il ¼ 0:99. This certainly
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introduces an error in the evaluation of the first term ð1þ jiCiÞ of
equation (10). When log x ¼ 1, we have found that for carbon
0:8 , ð1þ jiCiÞ , 1, therefore, we assume that this error does not
have strong consequences in what follows.
Solid lines in Figs 1(a) and (b) show log(g0) versus log T, for C

and Ar, and Ca and Fe, respectively. We have defined g0 asP
iNigi;0

) *
=NA, which can be interpreted as the total acceleration

arising from bound–bound transitions when the abundance of the
element is vanishing. Dashed lines are the accelerations arising
from lines using the detailed sampling method of LMR2000
computed for a very small abundance ðlog x ¼ 28Þ in order to
compare with log(g0). However, in order to be consistent with the
results of Seaton (1997) which will be used in comparisons below,
the frequency grids used to calculate the radiative accelerations are
not those presented in LMR2000 but are those employed in Seaton
(1997). We have used the method of LMR2000 because the tables
and codes of Seaton (1997) do not allow calculations at such low
abundance and do not allow the separation of the contribution from
bound–bound transitions from the total radiative acceleration. We

find that for a vanishing abundance ðlog x ¼ 28Þ, gi;line < gi;0, and
that gi,o is not sensitive to log x.
Figs 2(a)–(d) show the logarithm of the accelerations arising

from bound–bound transitions of a given element gline, defined asP
iNigi;line

) *
=NA, for log x ¼ 22, 0, þ1 (for C and Fe) or þ2 (for

Ar and Ca). In these figures, gi,line have been computed using
equation (10) while assuming a ¼ 21=2. As in Fig. 1, solid lines
are the accelerations obtained using approximations of Section 2,
and dashed lines those obtained by the sampling method. It appears
that comparison of gline against sampling is rather good for Ar and
Ca over a wide range of concentrations. For both elements, the
difference between the accelerations calculated using the two
methods is around 0.2 dex, it tends to be around 0.4 dex for
temperatures larger than log T ¼ 5:4. For Fe, the departure is more
systematically around 0.4 dex. For C, the effect of saturations is not
well reproduced. This is most likely caused by our assumption that
a ¼ 21=2. In order to evaluate the importance of the role of a, we
have calculated radiative accelerations trying several values of a
around21/2, for each ionization state of carbon. The same curves

Figure 1. Accelerations arising from bound–bound transitions for vanishing abundances for each element considered. The logarithm of the acceleration is

shown versus the depth (logarithm of temperature). Solid lines correspond to g0 and dashed lines to accelerations obtained through the sampling method for

logx ¼ 28. The acceleration g0 for a given element is a weighted sum of g0,i over the ionization stages of that element (see text). (a) Calcium and iron; (b)

carbon and argon.
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as in Fig. 2(a) are shown in Fig. 3 but using the values of a given in
Table 1. This result is quite satisfactory since the discrepancies
between detailed and approximate calculations fall around 0.2 dex,
except for the highest temperatures. However, these discrepancies
at high temperatures could be explained by some missing atomic

species, as compared with those included in Seaton (1997), for the
evaluation of the background opacities in the detailed sampling
method of LMR2000. We have not attempted to obtain more
suitable values of a for the ions of the other elements (Ar, Ca, Fe)
since the purpose of the present paper is to validate the
approximate formulae of Section 2 and not to furnish exhaustive
data to use these formulae. This will be the scope of a forthcoming
paper.
The final step in this study is to compare the full gtot given by

equation (19) to the accelerations obtained using the codes and
tables of Seaton (1997). These comparisons are shown in Fig. 4.
The thick solid lines are the accelerations of Seaton (1997), the thin
solid lines are those obtained through equation (19), the dashed line

Figure 2. Accelerations arising from bound–bound transitions for each element considered, obtained using equation (10), and assuming a ¼ 21=2, for three
different abundances. Dashed lines are accelerations obtained through the sampling method, the logx is indicated on each curve. (a) Carbon for logx ¼ 22, 0,

þ1; (b) argon for logx ¼ 22, 0, þ2; (c) calcium for logx ¼ 22, 0, þ2; (d) iron for logx ¼ 22, 0, þ1.

Figure 3. Acceleration arising from bound–bound transitions for carbon

using the values of a shown in Table 1. This plot can be compared with
Fig. 2(a).

Table 1. Adjustable parameters.

Ion a ai a*i

C I 20.5 1. 1.
C II 20.48 1. 1.
C III 20.48 1. 0.4
C IV 20.4 1. 0.6
CV 20.41 1.4 0.8
CVI 20.29 0.3 0.1
CVII No lines 0.15 0.25
All ions of Ar, Ca and Fe 20.5 1. 1.
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is the contribution of photoionization (weighted sum of gi,cont), and
the short–long dashed lines are the accelerations obtained by the
approximate formulae of Alecian & Artru (1990). The grid step is
0.2 dex in all of the panels. All gi,cont have been computed with
ai ¼ 1 except for carbon for which they have been adjusted

manually (see Table 1) to minimize the discrepancy with the
accelerations obtained with the codes and tables of Seaton (1997).
The values of a are those found in the previous paragraph (see
Table 1). The agreement, better than 0.2 dex for a large part of the
stellar model and for a large range of concentrations, is quite

Figure 4. Total accelerations for each element considered and for three different abundances. The thin solid lines are total accelerations obtained using equation

(19) (with the values of a and ai shown in Table 1), the dashed lines are the contributions of photoionization given by equation (16), the thick solid lines are total

accelerations obtained using the codes and tables of Seaton (1997), and finally, the dashed dotted lines are the accelerations given by the formulae of Alecian &

Artru (1990).
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satisfactory. The discrepancy which appears for Fe around log T ¼
5:3 for log x ¼ 0, þ1, can be explained by the fact that Seaton’s
tables are based on more complete atomic data than available in
TOPbase, since he has included atomic fine structures for iron (OP
‘PLUS’ data, not used in our work). Therefore, we overestimate the

saturation effect of lines. Note also that our data for Fe do not
include data for Fe I and Fe II because they are not available in
TOPbase. In all cases, our equation (19) gives significantly better
agreement with Seaton’s accelerations than the formulae of
Alecian & Artru (1990), especially, and as expected, for large

Figure 5. The SVP approximation for each element considered and for three different abundances. The thin solid lines are total accelerations obtained using

equation (19) (with the values of a and a*i shown in Table 1) where gi,line are the SVP accelerations defined by equation (20), the dashed lines are the

contributions of photoionization given by equation (16) but assuming !kmed=kmed;k ¼ 1, the thick solid lines are total accelerations obtained using the codes and

tables of Seaton (1997).
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abundances and for C and Fe. For C, the better agreement at
logx ¼ þ1 is caused by gi,cont (with adjusted ai of Table 1) which
dominates gtot.

3.3 The SVP approximation

Approximations proposed in Section 2, and leading to equation (10),
separate the concentration term from those depending explicitly on
the atomic data. As a consequence, detailed computation is no longer
needed each time the local concentration of the element under
consideration changes. This is especially useful to shorten the
calculations necessary to describe the building-up of the time-
dependent stratification of elements inside stars. However, the
computation of expressions (11), (14) and (15), i.e. gi,0, Ci,S and ji,
has to be done at least once for each layer of a given model, and
requires a large amount of atomic data. In this section, we examine
the efficiency of an additional approximation we have chosen to
name ‘SVP approximation’ (for Single Valued Parameters
approximation). This approximation, inspired from the one
proposed by Alecian & Artru (1990), reduces drastically the
amount of atomic data to be processed.
Let us define two dimensionless functions wi and ci such as,

according equations (11) and (14): gi;0 ¼ qwi and Ci;S ¼ bc2
i . SVP

approximation is based on the fact that wi, ci and ji (the
dimensionless function given by equation 15) vary weakly around
the layers where ion Aþi gives its maximum contribution to the
total radiative acceleration of element A. Moreover, these
quantities are weakly dependent on the stellar model.
SVP approximation consists in writing gi,line as:

gi;line ¼ qw*i ð1þ j*i CiÞ £ 1þ Ci

bc*2
i

 !a

; ð20Þ

where the parameters w*i , c*i and j*i are the numerical values of
the functions wi, ci and ji in a layer where T ¼ T ion;i which
corresponds to the temperature of the layer where Aþi has its
maximum relative population. Note that there is only one set of
three parameters for each ion. One important point to emphasize is
that equation (20) is valid only for temperatures around Tion,i, but
allows the computation of gtot for any layer in the model since the
weighting by Ni in equation (19) ensures that contributions of gi,line
far from Tion,i are negligible.
The SVP approximation cannot be safely extended to the

acceleration due to bound–free accelerations because Qi is too
sensitive to the local temperature. The only simplification we
propose is to impose !kmed=kmed;k ¼ 1 in equation (17).
Fig. 5 shows the results obtained for gtot using SVP

approximation for gi,line and the simplification mentioned in the
previous paragraph for gi,cont. The parameters w*i , c*i and j*i are
obtained using the computations presented in Fig. 4 for the largest
abundances. We emphasize that the same set of these parameters
(three per ion) has been used to compute gtot whatever the
abundance. The agreement is not as good as the one found in Fig. 4,
especially for carbon for which we had to change the value of ai for
C III to C VII to reduce the discrepancy we encounter for this
element (column a*i in Table 1). This discrepancy is mainly due to
the approximation !kmed/kmed;k ¼ 1 in the computation of gi,cont.
But, this simplification has been proposed only to avoid explicit
use of any opacity tables in the computations of gtot shown in Fig. 5,
it is not necessary when kmed and kmed,kare available. We have also
verified that keeping kmed and kmed,k in equation (17) improves the
results significantly. Another source of error for carbon comes from

the fact that CV has an ideal gas configuration and is the
dominating ion for a large temperature domain, and thus it is
difficult to properly define Tion,i. It should also be noted that the
values of a and ai used here were manually adjusted to obtain
better results for a solar abundance of the element. A more
systematic algorithm will have to be devised to adjust these
parameters, but this is outside the scope of this paper. Finally, the
SVP approximation appears to be rather good for the other
elements (Ar, Ca and Fe), noting that no adjustments were made
to the values of a or ai for these elements in the results presented
here.

4 CONCLUSION

The new approximations proposed in this paper are undoubtedly a
major improvement over the semi-analytic approximations defined
by Alecian (1985), Alecian & Artru (1990) and Alecian (1994). Of
course, this improvement has a cost: detailed monochromatic
opacities are now involved in the functions wi and ci, and a new
function ji (depending also on opacities) has been introduced.
However, the new approximations have kept several advantages.

(i) The terms depending strongly on the local abundance are
separated from those depending mainly on the atomic data. This
allows much faster computation of time dependent stratifications in
stars, with reasonable accuracy even for abundant elements. The
requirement is to tabulate wi, ci and ji for each layer of the stellar
model, before the first time step of the computation.
(ii) The new approximations include an analytic approximation

of the radiative acceleration arising from photoionization.
(iii) Equation (10) models the radiative acceleration on a

physical basis. This is more satisfactory for understanding of the
behaviour of radiative accelerations than a method using large
interpolation tables. It could be easily implemented in any
application where detailed opacities and atomic data are available
and it can also bring us to define additional approximations (see
below).

We have also proposed the SVP approximation, which is less
accurate, but is extremely fast in numerical applications. In SVP
approximation, the computation of the acceleration needs neither
large atomic data bases nor detailed opacity tables (except if higher
accuracy is needed for the contribution of photoionization). The
requirement is to have tables of w*i , c*i and j*i . They will be
produced exhaustively, with the a and ai, in a forthcoming paper.
The other requirement is to have a table of atomic energy levels
which are needed to computeQi, but, in any case, these atomic data
are the same as those needed to compute the relative population of
ions.
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We are indebted to RQCHP and CERCA for computing time with
which some of our calculations were made. We also thank M. J.
Seaton and C. Zeippen to have kindly communicated some parts of
the OP codes and tables necessary to compute the opacities and
J. Richer for providing the stellar model used for our calculations.

Radiative accelerations in stars 899

q 2002 RAS, MNRAS 332, 891–900



REFERENCES

Alecian G., 1985, A&A, 145, 275

Alecian G., 1994, A&A, 289, 885
Alecian G., Artru M.-C., 1990, A&A, 234, 323

Alecian G., LeBlanc F., 2000, MNRAS, 319, 677

Alecian G., Michaud G., 1981, ApJ, 245, 226
Alecian G., Stift M. J., 2002, A&A, submitted

Alecian G., Michaud G., Tully J., 1993, ApJ, 411, 882

Cunto W., Mendoza C., Ochsenbein F., Zeippen C., 1993, A&A, 275, L5

Dreizler S., Wolff B., 1999, A&A, 348, 189
Gonzalez J.-F., LeBlanc F., Artru M.-C., Michaud G., 1995, A&A, 297, 223

(GLAM)

Hui-Bon-Hoa A., LeBlanc F., Hauschildt P. H., 2000, ApJ, 535, L43

Hui-Bon-Hoa A., LeBlanc F., Hauschildt P. H., Baron E., 2002, A&A, 381,
197

LeBlanc F., Michaud G., Richer J., 2000, ApJ, 538, 876 (LMR2000)

Massacrier G., 1996, A&A, 309, 979
Michaud G., 1970, ApJ, 160, 641

Mihalas D., 1978, Stellar Atmospheres. W. H. Freeman and Co., San

Francisco

Richer J., Michaud G., 1993, ApJ, 416, 312
Richer J., Michaud G., Rogers F., Iglesias C., Turcotte S., LeBlanc F., 1998,

ApJ, 492, 883

Richer J., Michaud G., Turcotte S., 2000, ApJ, 529, 338

Seaton M. J., 1997, MNRAS, 289, 700
Seaton M. J., 1999, MNRAS, 307, 1008

SeatonM. J., Zeippen C. J., Tully J. A., Pradhan A. K., Mendoza C., Hibbert

A., Berrington K. A., 1992, Rev. Mex. Astron. Astrofis., 23, 19

Turcotte S., Richer J., Michaud G., 1998a, ApJ, 504, 559
Turcotte S., Richer J., Michaud G., Iglesias C. A., Rogers F. J., 1998b, ApJ,

504, 539

Vauclair S., Michaud G., Charland Y., 1974, A&A, 31, 381

APPENDIX A

The radiative acceleration arising from a bound–bound transition l
(from level k to m) of ion Aþ i is given by

gil ¼
Nik

AmpcNi

ð1

0

skmFn dn; ðA1Þ

where Fn dn is the net energy flux transported by photons with
frequency between n and nþ dn, skm is the absorption cross-
section for a transition from energy level k to m at frequency n, mp

is the mass of the proton, Nik the number density of ion Aþi in level
k and c is the velocity of light. Other symbols are defined in the
main text.
Since we consider an optically thick medium, the diffusion

approximation can be used to express the net energy flux. Then,
according to the definition of the effective temperature of stars, the
radiative acceleration, using same notations as equation (7), can be
written as (see for instance Vauclair, Michaud & Charland 1974
and GLAM)

gil ¼
pk 4

2h 3c 3

R

r

$ %2
!kRT4

effNik

AmpNi

ð1

0

skmk
21PðuÞ du: ðA2Þ

One can note that, according to the definitions in Section 2,

k ¼ kmed þ kA2il þ
Nikskm

r
; ðA3Þ

where r is the mass density.
The cross-section for a bound–bound transition l (from level k to

m), with normalized profile fn, can be approximated by the
classical formula (see for instance Mihalas 1978, p. 278):

skm ¼ pe 2f l
mec

fn; ðA4Þ

where e and me are respectively the values of the charge and the
mass of the electron.
If we assume that the profile fn is a Lorentz profile, and that

kmed and kA2il do not vary significantly in the frequency interval
where the line l contributes to the acceleration, the integral in (A2)
can be calculated analytically and leads to equation (6) for the
radiative acceleration.
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