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ABSTRACT
Accurate determination of radiative accelerations of the elements is critical when studying
atomic diffusion in stars. However, the computing time necessary to calculate these accel-
erations can become prohibitive because large atomic and opacity data bases are required.
Parametric equations of radiative accelerations due to both bound–bound and bound–free tran-
sitions, valid at large optical depths, are presented for the following trace elements: C, N, O,
Ne, Na, Mg, Al, Si, S, Ar, Ca and Fe. These equations can easily be implemented in existing
astrophysical applications without requiring large computing resources.

Key words: diffusion – stars: abundances – stars: chemically peculiar.

1 I N T RO D U C T I O N

Precise determination of radiative accelerations (grad) of the ele-
ments caused by momentum transfer following photoexcitation or
photoionization is an essential ingredient in the study of elemen-
tal diffusion in stars. These accelerations depend primarily on the
capacity of the ions to absorb photons from the radiative flux.

In certain stars (especially chemically peculiar stars) there ex-
ist stellar regions that are hydrodynamically stable enough so that
diffusion of the elements can occur (Michaud 1970). The elements
can then be stratified with depth and this stratification can affect
the structure and evolution of these stars (e.g. Turcotte, Richer &
Michaud 1998). In certain stars, diffusion can be important in the
atmosphere and can even modify its physical structure (Dreizler &
Wolff 1999; Hui-Bon-Hoa, LeBlanc & Hauschildt 2000; LeBlanc
2003).

This paper is the third of a series that aims to simplify the calcula-
tion of grad as compared to other methods such as opacity sampling
(Seaton 1997; Richer et al. 1998; LeBlanc, Michaud & Richer 2000)
or the so-called GLAM method (Gonzalez et al. 1995). In the first
paper (Alecian & LeBlanc 2000, hereafter Paper I) of the series,
the behaviour of grad was studied in order to better understand its
properties and to guide us in the development of new approximate
formulae of grad which are written in a parametric form. These for-
mulae, published in Alecian & LeBlanc (2002, hereafter Paper II),
and which are valid for trace elements at large optical depths, were
improvements of the bound–bound formula of Alecian (1985) and
Alecian & Artru (1990) and those due the bound–free transitions
of Alecian (1994). The improvements stemmed from the use of
detailed monochromatic opacities instead of Rosseland mean opac-
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ities. These new formulae depend on a number of parameters that
will be calculated for the elements which the atomic data are pro-
vided by the Opacity Project (Seaton et al. 1992) through TOPBase
(Cunto et al. 1993). These elements are C, N, O, Ne, Na, Mg, Al,
Si, S, Ar, Ca and Fe. Some of the parameters are calculated with
the atomic data (see the discussion about the single-valued param-
eter (SVP) approximation in Paper II) while others are obtained by
fitting our grad to those of Seaton (1997).

The aim of this paper is to furnish the values of the parameters
which are found in the new approximate formulae for each ion
of the elements considered here. This will enable users to easily
include grad in their astrophysical applications, such as evolutionary
models. We will first briefly describe the theory behind these new
formulae. We will then explain the method used to obtain the values
of the parameters found in these formulae and show results of our
grad compared to those of Seaton (1997). We will also give the
values of these parameters for Fe in a T eff = 10 000 K stellar model.
The data for the other elements and for other stellar models will
be made available on the internet. A short conclusion will then be
presented.

2 T H E O RY

In Paper II, parametric equations were developed for the bound–
bound transitions by generalizing the treatment of Alecian & Artru
(1990) and Alecian (1985). These equations aim to separate the
terms depending explicitly on the atomic data from those depending
on the concentration of the ion i under consideration. The proposed
approximate formula (using the SVP approximation; see below for
more details) is

gi,line = qϕ∗
i

(

1 + ξ ∗
i Ci

)

(

1 + Ci

bψ∗2
i

)αi

(1)
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where

q = 5.575 × 10−5 T 4
eff

T

(

R
r

)2
1
A

(2)

and

b = 9.83 × 10−23 NeT −1/2

XH
. (3)

Here, T eff and R are the effective temperature and radius of the star,
T and r are the local temperature and radius, N e is the electronic
density, XH is the hydrogen mass fraction, A is the atomic mass in
atomic units of the species under consideration and Ci is the concen-
tration (in number) of the ion relative to hydrogen. The parameters
ϕ i

∗, ψ i
∗ and ξ i

∗ are the values of ϕ i , ψ i and ξ i (see equations 10–
15 and section 3.3 of Paper II for more details) calculated where
the population of ion i is close to its maximum. We will refer to
this layer by its temperature Tion(i) defined in Section 3.1. The SVP
approximation (see Paper II for more details) simplifies the original
equations in which all three parameters are calculated at each struc-
ture point. These parameters are obtained using the Opacity Project
(Seaton et al. 1992) atomic data available through the TOPBase data
base (Cunto et al. 1993). The parameter ϕ i is related to the oscil-
lator strengths of the transitions of the ion, ψ i to their linewidths
that primarily controls saturation, and ξ i is an additional parameter
introduced in Paper II that also affects saturation and appears when
monochromatic opacities are considered in the development of the
approximate formula for the grad due to bound–bound transitions.
The value α i, which is −0.5 in the case of pure Lorentzian line
profiles, will be calculated by fitting our parametrized grad to those
calculated by opacity sampling (Seaton 1997). This parameter also
strongly affects saturation.

The grad due to bound–free transitions differ from those due to
lines because the momentum acquired during photoionization is
transferred to the newly ionized ion; the acceleration of the neu-
tral species (i = 0) is zero while the momentum of the completely
ionized ion is not. An approximate equation for the bound–free tran-
sitions based on that found by Alecian (1994) was also developed
in Paper II. The main crux of this approximate formula is that it as-
sumes that photoionization cross-sections follow a power law close
to the hydrogenic case. Neglecting the momentum taken away by
the electron during photoionization (e.g. Massacrier 1996), the ra-
diative acceleration due to bound–free transitions for charged ions
(i > 0) can be approximated by

gi,cont ≈ 7.16 × 10−26 NeT 4
eff

T 3/2

(

R
r

)2
1

Ai2
&i , (4)

where

&i ≈ ai
Ni−1,0 pi−1

Ni−1 pi g0

∑

k

nk gk Qk (5)

and

Qk ≈ u3
k

[

uk

1 − e−uk
− euk ln(1 − e−uk )

]

. (6)

Here, N i−1,0 is the number density of the ground level of the ion
A+(i−1) and N i−1 is the number density of this ion, pi is the partition
function of A+i, nk and gk are respectively the main quantum number
and the statistical weight of energy level k of A+(i−1) and uk is eval-
uated at the ionization threshold frequency from level k where u =
hν/ kT . The factor ai has been introduced to correct possible dis-
crepancies with respect to hydrogenic cross-sections. Its value will
be determined by fitting the accelerations of the approximate for-
mulae to those of Seaton (1997). In equation (5), &i is written

assuming κmed/κmed,k = 1 as prescribed by the SVP approximation
and where these are opacities also defined in Paper II (see equa-
tions 1 and 2 of Paper II). This approximation renders the present
equations more easily usable because the monochromatic opacities
are not needed to evaluate&i. Because&i depends strongly on tem-
perature, it will have to be evaluated at each structure point where
needed and thus its value will not be given here. In order to sim-
plify its calculations, the atomic levels were grouped together as
described in Alecian, Michaud & Tully (1993). The atomic data of
these grouped levels will be made available by the authors to future
users.

The total radiative acceleration for element A is a weighted sum
of the accelerations of the various ions and can be expressed as

gtot =
∑

i wi Ni (gi,line + gi,cont)
∑

i wi Ni
. (7)

The weights w i were set equal to 1 in Paper II, but they should
involve diffusion coefficients if the effect of the mobility of the ions
and redistribution of momentum among the ions are to be taken into
account. Generally, wi = 1 is well justified in the domain of validity
of the SVP approximation. More details concerning the importance
of these effects on grad can be found in Montmerle & Michaud (1976)
and Gonzalez et al. (1995).

3 A P P LY I N G T H E S V P A P P ROX I M AT I O N

3.1 Calculating procedure

The SVP approximation is based on two main assumptions. The
first is that the contribution of ions to the total acceleration given
by equation (7) is maximum around the point where they have their
maximum of population (see the definition of Tion in Section 2 and
in equation 8). The second assumption is that ϕ i , ψ i and ξ i vary
smoothly around that point (Alecian & Artru 1990). We have first
tried to set Tion(i) to be exactly the temperature of the layer where the
relative population of ion i reaches its maximum. However, we have
found that the following choice gives better results (the summation
index l denotes the model layers):

log Tion (i) =

∑

l

Ni,l log Tl

∑

l

Ni,l
. (8)

The layer which is finally chosen to compute the parameters ϕ i
∗,

ψ i
∗ and ξ i

∗ is the one in which the temperature is the closest to
Tion(i) given by equation (8). This layer is generally the one where
the relative population of ion i is maximum when its relative popula-
tion varies with respect to log T more or less symmetrically around
its maximum. However, this layer is significantly displaced when
there is strong asymmetry, namely for ions adjacent to the one with
noble gas configuration. We have also found that the SVP approx-
imation gives better results if the weights of ions with noble gas
configurations are increased in equation (7): the weights wi are kept
equal to 1, except for ions with noble gas configurations where they
are set to 1.5. This correction is needed because when a noble gas
configuration has a large ionization fraction, the ionization fraction
of the neighbouring ion is not necessarily negligible. Because the
values of the parameters for this neighbouring ion are calculated at
its Tion, its grad is not precise where the noble gas configuration ion
is at its maximum population.

The parameters ϕ i
∗, ψ i

∗ and ξ i
∗ involved in the approximate

equation for accelerations due to bound–bound transitions were cal-
culated for each ion considered at the temperature point nearest to
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Tion(i) in various stellar models and assuming that elements are
overabundant (by +1 dex for C, N, O and Fe, and +2 dex for
the others). We chose to use the values of these parameters eval-
uated at these large abundances because the saturation effects are
more important there and we therefore obtain better results. Even
though it would be preferable to have only one set of parameters
that could be used for any stellar model, more accurate results are
obtained when they are calculated in a model close to the one in
which the parametrized grad will be applied. This is mainly due to
the dependence of Tion(i) on the stellar structure, because electronic
density at a given temperature is strongly dependent on the stellar
model. The values of these three parameters will be made available to
users.

As mentioned above, in the case of pure Lorentzian line profiles
the value of α i is −0.5 (the default value), but, as discussed in Paper
I, the behaviour of real ions may be far from the ideal one. To obtain
more precise grad, the value of this parameter will be determined by
fitting our approximate grad to those of Seaton (1997).

For the bound–free transitions, the value of&i must be calculated
at each point at which radiative accelerations are required. These
values will not be given here. An additional parameter ai, which
is needed to calculate &i, remains. This empirical parameter was
included in equation (6), and therefore in equation (5), to partially
correct for the approximate ionization cross-sections used. The value
of ai (ai = 1 by default) will also be determined by fitting and will
be given here.

3.2 Determination of αi and correcting factors

The fitting procedure was performed in a straightforward way in
which the accelerations were calculated on a grid of values of α i

and ai. The chosen grid was such that −0.5 ! α i ! − 0.1 (see figs 4,
5 and 6 in Paper I) and 0.1 ! ai ! 2.0. For the initial iteration, grad

was calculated for the element under consideration with α i = −0.5
and ai = 1 for all ions. New values of grad were then computed for
each set of values of α i and ai for the first ion at the point in the
model under consideration with temperature nearest to its Tion(i). A
pair of α i and ai was then chosen for this ion such that the error
of grad of the element for a given abundance (see below) was at
its minimum as compared to the grad given by Seaton (1997). This
minimization was then repeated for each ion of the element in order
to obtain their α i and ai values. The fit was carried out at a solar
abundance for the elements C, N, O and Fe and at an abundance of
+1 dex (relative to its solar value) for the other elements, because
the saturation effects of the grad due to lines are more important at
large abundances and it is thus more critical to have a proper fit
there. This whole procedure was then repeated until the variation of
the average error per structure point of the stellar model from one
iteration to the next was less than 10−3 dex. This was done for each
element considered here.

Although the fitted grad are much better than those with α i =
−0.5 and ai = 1, the fit for certain elements is still not satisfactory.
This is partly due to the fact that in the approximate formula of
Alecian (1994) for the acceleration due to bound–free transitions, it
was supposed that it is independent of concentration. Because this
supposition is not true, especially for abundant elements, an addi-
tional empirical term, which mimics saturation effects, was added
to equation (4):

gi,cont ≈ [gi,cont]eq. 4

(

χ

1 + χ

)bi

. (9)

5.3

5.2

5.1

5.0

4.9

4.8

4.7

4.6

4.5

4.4

4.3

4.2

4.1

4.0

3.9

lo
g 

g r
ad

6.26.05.85.65.45.25.04.84.6

log T(K)

Fe
 SVP uncorrected
 SVP with parameters of Table 2
 Seaton

Figure 1. Comparison of Fe radiative accelerations at solar abundance in
a Teff = 10 000 K, log g = 4.3 model. The logarithms of acceleration are
plotted versus log T(K). Open circles represent the grad found by Seaton
(1997), the dashed line represents the grad using our parametric formulae
assuming α i = −0.5, ai = 1 and bi = 0 (no correction), while the solid line
gives the acceleration calculated with the fitted values of α i, ai and bi of
Table 2, and with wi = 1.5 for noble gas configurations.

Here, χ is the abundance of the element relative to its solar value
in number and bi (not to be confused with the coefficient defined
by equation 3) are negative valued empirical parameters that are
determined by fitting. This formula was chosen because it tends to
1 when χ is large, which is desired because the parameters α i and
ai are determined at high abundances (i.e. χ = 10). The value of
bi for each ion was obtained by fitting grad at abundances from −2
to +1 dex within the range −2 ! bi ! 0 similarly to the procedure
followed to obtain the values of α i and ai.

3.3 Results

Fig. 1 shows a comparison between grad before any correction and
those with wi = 1.5 for noble gas configuration, while using the
fitted values of α i, ai and bi in a Teff = 10 000 K, log g = 4.3 model
from Richer & Michaud (1993). The improvement shown in Fig. 1
for iron at solar abundance is among the most spectacular, but the
accelerations of all the elements are improved by this procedure.
Table 1 shows the average error of the fitted grad on the structure

Table 1. Average error (in dex) for grad in a Teff = 10 000 K, log g = 4.3
model for various values of log χ .

log χ
Element −2 −1 0 1

C 0.0701 0.0785 0.0657 0.2242
N 0.1036 0.0709 0.0452 0.1567
O 0.0623 0.0482 0.0238 0.1784
Ne 0.0855 0.1084 0.0470 0.0270
Na 0.1016 0.1567 0.0655 0.0519
Mg 0.1419 0.1240 0.0476 0.0365
Al 0.1085 0.1030 0.0419 0.0496
Si 0.1080 0.1132 0.0437 0.0142
S 0.0395 0.0792 0.0362 0.0211
Ar 0.0660 0.0404 0.0202 0.0085
Ca 0.1051 0.0842 0.0227 0.0147
Fe 0.0918 0.0478 0.0057 0.1066
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Table 2. Parameters for Fe in a Teff = 10 000 K, log g = 4.3 model (Fe1 corresponds to the neutral state).

Ion ϕ i
∗ ψ i

∗ ξ i
∗ α i ai bi

Fe1 0.00 0.00 0.00 −0.500 – –
Fe2 0.00 0.00 0.00 −0.500 1.000 −2.000
Fe3 0.00 0.00 0.00 −0.500 1.000 −2.000
Fe4 3.73 × 10−1 5.23 6.30 −0.350 1.200 0.000
Fe5 1.35 1.34 1.88 × 101 −0.325 1.450 0.000
Fe6 1.50 6.35 × 10−1 2.08 × 101 −0.400 0.275 0.000
Fe7 2.14 6.51 × 10−1 −3.10 −0.475 1.275 0.000
Fe8 1.38 × 101 1.71 × 10−1 −4.59 × 102 −0.500 1.800 0.000
Fe9 1.90 × 101 1.53 × 10−1 2.76 × 102 −0.300 0.100 0.000
Fe10 1.85 × 101 1.62 × 10−1 1.20 × 103 −0.300 2.000 0.000
Fe11 1.06 × 101 2.33 × 10−1 3.54 × 103 −0.200 0.100 0.000
Fe12 8.54 2.08 × 10−1 4.37 × 103 −0.200 0.175 −0.775
Fe13 7.03 1.77 × 10−1 8.72 × 103 −0.200 0.600 −0.825
Fe14 1.02 × 101 1.31 × 10−1 1.45 × 104 −0.275 0.100 0.000
Fe15 1.08 × 101 4.84 × 10−2 2.09 × 104 −0.350 2.000 0.000
Fe16 5.45 1.84 × 10−2 6.26 × 103 −0.250 1.050 0.000
Fe17 9.97 × 10−1 2.54 × 10−2 4.48 × 102 −0.500 0.100 0.000
Fe18 7.16 1.20 × 10−2 1.26 × 103 −0.400 0.300 0.000
Fe19 1.17 × 101 1.29 × 10−2 3.10 × 103 −0.275 1.725 0.000
Fe20 1.28 × 101 1.36 × 10−2 6.55 × 103 −0.500 0.475 0.000
Fe21 1.20 × 101 1.29 × 10−2 7.13 × 103 −0.275 0.300 0.000
Fe22 9.94 9.78 × 10−3 1.92 × 104 −0.500 0.100 0.000
Fe23 8.34 5.84 × 10−3 2.81 × 105 −0.500 0.100 0.000
Fe24 4.24 2.59 × 10−3 5.67 × 106 −0.500 0.100 0.000
Fe25 0.00 0.00 0.00 −0.500 1.000 0.000
Fe26 0.00 0.00 0.00 −0.500 1.000 0.000
Fe27 – – – – 0.100 0.000

points of the model with 4.7 ! log T ! 6.3 as compared to those of
Seaton (1997). These errors are less than 0.1 dex for most elements
at most abundances within the range −2 ! log χ ! 1.

The calculated parameters ϕ i
∗, ψ i

∗ and ξ i
∗ as well as the fitted

parameters α i, ai and bi for Fe in the Teff = 10 000 K model used
here are found in Table 2. It should be emphasized that ϕ i

∗,ψ i
∗, ξ i

∗

and α i are parameters that naturally appear in our grad equations,
while ai and bi are correction factors added to partially correct
grad following certain approximations made and thus produce more
accurate results. Even though α i is physically related to the line
profiles, having a value of −0.5 for a pure Lorentzian profile, it
was adjusted so other effects that were neglected in our equations,
such as line blending, could be indirectly taken into account and so
that our equations could then better reproduce the saturation of the
lines.

Fig. 2 shows the accelerations obtained for all the elements con-
sidered, for several abundances, using the parameters calculated
here. The value of these six parameters for other stellar models
as well as the atomic data needed to calculate &i can be found at
http://www.umoncton.ca/leblanfn/grad. Subroutines enabling easy
implementation of the grad equations shown here will also be made
available.

4 C O N C L U S I O N

This paper concludes the study started in Papers I and II. It provides
a method and data allowing very fast computation of radiative ac-
celerations in stars, preserving a reasonable accuracy. In addition

to its numerical expediency, the SVP approximation is much easier
to implement in codes because much less data are to be processed
than by usual methods for computing radiative accelerations (see
discussion in Paper II).

The SVP method described in Paper II has been improved in this
paper by the addition of a correction factor related to the saturation
of the acceleration due to photoionization and by increasing the
weight of ions with noble gas configurations in equation (7). The
SVP approximation consists of using equations (1), (7) and (9) with
six tabulated parameters per ion. As an example, we provide these
parameters for Fe in Table 2 for a Teff = 10 000 K stellar model.
This table, which is valid in the abundance range −2 ! log χ !
1, should only be used in models with Teff near 10 000 K. Similar
tables including the other elements considered here and for other Teff

will be made available at http://www.umoncton.ca/leblanfn/grad,
where we provide the complete tables in electronic form. These
will be updated as soon as new atomic data or improved parameters
are available.
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Figure 2. Radiative accelerations for all the elements considered in a Teff = 10 000 K, log g = 4.3 model. The logarithms of acceleration are plotted versus
log T(K). The solid lines represent the grad found by Seaton (1997), the dashed lines those calculated with the fitted values of α i, ai and bi, and with w i = 1.5
for noble gas configurations. Three abundances are shown: log χ = −1, 0 and 1.
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Figure 2 – continued
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